Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.872
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Biol Ther ; 25(1): 2343450, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38742566

RESUMEN

The potential function and mechanism of circRNAs in regulating malignant performances of Osteosarcoma (OS) cells have not been well investigated. The expression level of CircLMO7, miR-21-5p and ARHGAP24 were detected by RT-qPCR. The relationship between miR-21-5p and circ-LMO7, as well as between miR-21-5p and ARHGAP24, was predicted and examined through bioinformatics analysis and luciferase reporter gene experiments. Moreover, OS cell growth, invasion, migration, and apoptosis were detected using the cell counting kit-8 (CCK-8), transwell and flow cytometry assays, respectively. ARHGAP24 protein level was measured using western blotting. In present study, we choose to investigate the role and mechanism of circ-LOM7 on OS cell proliferation, migration and invasion. circ-LOM7 was found to be down-regulated in OS tissues and cell lines. Enforced expression of circ-LOM7 suppressed the growth, invasion, and migration of OS cells. In contrast, decreasing circ-LMO7 expression had opposite effects. Furthermore, miR-21-5p was predicted to be sponged by circ-LMO7, and had an opposite role of circ-LMO7 in OS. Moreover, ARHGAP24 served as miR-21-5p's downstream target. Mechanistically, circ-LMO7 was packed in exosomes and acted as a cancer-suppresser on OS by sponging miR-21-5p and upregulating the expression of ARHGAP24. The exosomal circ-LMO7 expression was significantly decreased in OS cell exosomes, and co-culture experiments showed that exosomal circ-LMO7 suppressed the proliferation ability of OS cells. Circ-LMO7 exerts as a tumor suppressor in OS, and the circ-LMO7/miR-21-5P/ARHGAP24 axis is involved in OS progression.


Asunto(s)
Progresión de la Enfermedad , Exosomas , Proteínas Activadoras de GTPasa , MicroARNs , Osteosarcoma , ARN Circular , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Exosomas/metabolismo , Exosomas/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Proliferación Celular , Ratones , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino
2.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742843

RESUMEN

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Óseas , Regulación Neoplásica de la Expresión Génica , Inflamasomas , Osteosarcoma , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/inmunología , Osteosarcoma/mortalidad , Inflamasomas/metabolismo , Inflamasomas/genética , Biomarcadores de Tumor/genética , Pronóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Neoplasias Óseas/inmunología , Neoplasias Óseas/diagnóstico , Perfilación de la Expresión Génica , Femenino , Masculino , Transcriptoma/genética , Línea Celular Tumoral , Proliferación Celular/genética , Adolescente , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo
3.
Sci Rep ; 14(1): 11056, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744935

RESUMEN

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Retinoblastoma , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Línea Celular Tumoral , Proteínas de Unión a Retinoblastoma/genética , Proliferación Celular , Mutación de Línea Germinal , Criopreservación , Masculino , Perfilación de la Expresión Génica , Movimiento Celular/genética
4.
BMC Cancer ; 24(1): 580, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735973

RESUMEN

BACKGROUND: SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS: SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS: SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS: Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.


Asunto(s)
Apoptosis , Neoplasias Óseas , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Osteosarcoma , Factores de Empalme Serina-Arginina , Humanos , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Apoptosis/genética , Movimiento Celular/genética , Regulación hacia Arriba , Empalme Alternativo
5.
J Pathol Clin Res ; 10(3): e12376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738521

RESUMEN

The identification of gene fusions has become an integral part of soft tissue and bone tumour diagnosis. We investigated the added value of targeted RNA-based sequencing (targeted RNA-seq, Archer FusionPlex) to our current molecular diagnostic workflow of these tumours, which is based on fluorescence in situ hybridisation (FISH) for the detection of gene fusions using 25 probes. In a series of 131 diagnostic samples targeted RNA-seq identified a gene fusion, BCOR internal tandem duplication or ALK deletion in 47 cases (35.9%). For 74 cases, encompassing 137 FISH analyses, concordance between FISH and targeted RNA-seq was evaluated. A positive or negative FISH result was confirmed by targeted RNA-seq in 27 out of 49 (55.1%) and 81 out of 88 (92.0%) analyses, respectively. While negative concordance was high, targeted RNA-seq identified a canonical gene fusion in seven cases despite a negative FISH result. The 22 discordant FISH-positive analyses showed a lower percentage of rearrangement-positive nuclei (range 15-41%) compared to the concordant FISH-positive analyses (>41% of nuclei in 88.9% of cases). Six FISH analyses (in four cases) were finally considered false positive based on histological and targeted RNA-seq findings. For the EWSR1 FISH probe, we observed a gene-dependent disparity (p = 0.0020), with 8 out of 35 cases showing a discordance between FISH and targeted RNA-seq (22.9%). This study demonstrates an added value of targeted RNA-seq to our current diagnostic workflow of soft tissue and bone tumours in 19 out of 131 cases (14.5%), which we categorised as altered diagnosis (3 cases), added precision (6 cases), or augmented spectrum (10 cases). In the latter subgroup, four novel fusion transcripts were found for which the clinical relevance remains unclear: NAB2::NCOA2, YAP1::NUTM2B, HSPA8::BRAF, and PDE2A::PLAG1. Overall, targeted RNA-seq has proven extremely valuable in the diagnostic workflow of soft tissue and bone tumours.


Asunto(s)
Neoplasias Óseas , Hibridación Fluorescente in Situ , Neoplasias de los Tejidos Blandos , Flujo de Trabajo , Humanos , Neoplasias Óseas/genética , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/patología , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/patología , Femenino , Adulto , Masculino , Persona de Mediana Edad , Adolescente , Anciano , Análisis de Secuencia de ARN , Niño , Adulto Joven , Fusión Génica , Biomarcadores de Tumor/genética , Preescolar , Anciano de 80 o más Años , Proteínas de Fusión Oncogénica/genética
6.
Clin Transl Med ; 14(5): e1670, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689429

RESUMEN

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Asunto(s)
Resistencia a Antineoplásicos , Osteosarcoma , Proteínas Wnt , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Humanos , Resistencia a Antineoplásicos/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Animales , Ratones , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos , Línea Celular Tumoral
7.
Genes Chromosomes Cancer ; 63(5): e23241, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738966

RESUMEN

Osteoblastomas (OBs) are benign neoplasms constituting approximately 1% of primary bone tumors with a predilection for the spine and sacrum. We describe an OB of the proximal phalanx of the left thumb in a 38-year-old female. MRI of left hand demonstrated a 29-mm mildly expansile enhancing lesion involving the entire proximal phalanx of the first digit. Histology displayed a bone-forming tumor consisting of trabeculae of remodeled woven bone framed by plump osteoblasts in a vascularized background. Next-generation sequencing analysis identified a PRSS44::ALK fusion gene.


Asunto(s)
Neoplasias Óseas , Osteoblastoma , Pulgar , Humanos , Femenino , Adulto , Pulgar/patología , Pulgar/anomalías , Osteoblastoma/genética , Osteoblastoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proteínas de Fusión Oncogénica/genética
8.
Biol Direct ; 19(1): 28, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650011

RESUMEN

BACKGROUND: Osteosarcoma is a diverse and aggressive bone tumor. Driver genes regulating osteosarcoma initiation and progression remains incompletely defined. Zinc finger protein 692 (ZNF692), a kind of Krüppel C2H2 zinc finger transcription factor, exhibited abnormal expression in different types of malignancies and showed a correlation with the clinical prognosis of patients as well as the aggressive characteristics of cancer cells. Nevertheless, its specific role in osteosarcoma is still not well understood. METHODS: We investigated the dysregulation and clinical significance of ZNF692 in osteosarcoma through bioinformatic method and experimental validation. A range of in vitro assays, including CCK-8, colony formation, EdU incorporation, wound healing, and transwell invasion tests, were conducted to assess the impact of ZNF692 on cell proliferation, migration, and invasion in osteosarcoma. A xenograft mouse model was established to evaluate the effect of ZNF692 on tumor growth in vivo. Western blot assay was used to measure the protein levels of MEK1/2, P-MEK1/2, ERK1/2, and P-ERK1/2 in cells that had been genetically modified to either reduce or increase the expression of ZNF692. The relationship between ZNF692 and tyrosine kinase non-receptor 2 (TNK2) were validated by qRT-PCR, chromatin immunoprecipitation and luciferase reporter assays. RESULTS: Expression of ZNF692 was increased in both human osteosarcoma tissues and cell lines. Furthermore, the expression of ZNF692 served as an independent predictive biomarker in osteosarcoma. The results of the survival analysis indicated that increased expression of ZNF692 was associated with worse outcome. Downregulation of ZNF692 inhibits the proliferation, migration, and invasion of osteosarcoma cells, whereas upregulation of ZNF692 has the opposite impact. Western blot assay indicates that reducing ZNF692 decreases phosphorylation of MEK1/2 and ERK1/2, whereas increasing ZNF692 expression enhances their phosphorylation. U0126, a potent inhibitor specifically targeting the MEK/ERK signaling pathway, partially counteracts the impact of ZNF692 overexpression on the proliferation, migration, and invasion of osteosarcoma cells. In addition, ZNF692 specifically interacts with the promoter region of TNK2 and stimulates the transcription of TNK2 in osteosarcoma cells. Forcing the expression of TNK2 weakens the inhibitory impact of ZNF692 knockdown on P-MEK1/2 and P-ERK1/2. Similarly, partly inhibiting TNK2 counteracts the enhancing impact of ZNF692 overexpression on the phosphorylation of MEK1/2 and ERK1/2. Functional tests demonstrate that the suppressive effects of ZNF692 knockdown on cell proliferation, migration, and invasion are greatly reduced when TNK2 is overexpressed. In contrast, the reduction of TNK2 hinders the ability of ZNF692 overexpression to enhance cell proliferation, migration, and invasion. CONCLUSION: ZNF692 promotes the proliferation, migration, and invasion of osteosarcoma cells via the TNK2-dependent stimulation of the MEK/ERK signaling pathway. The ZNF692-TNK2 axis might potentially function as a possible predictive biomarker and a promising target for novel therapeutics in osteosarcoma.


Asunto(s)
Movimiento Celular , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Osteosarcoma , Animales , Femenino , Humanos , Ratones , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Invasividad Neoplásica , Osteosarcoma/genética , Osteosarcoma/metabolismo
9.
Front Immunol ; 15: 1362970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629071

RESUMEN

Background: T cell exhaustion in the tumor microenvironment has been demonstrated as a substantial contributor to tumor immunosuppression and progression. However, the correlation between T cell exhaustion and osteosarcoma (OS) remains unclear. Methods: In our present study, single-cell RNA-seq data for OS from the GEO database was analysed to identify CD8+ T cells and discern CD8+ T cell subsets objectively. Subgroup differentiation trajectory was then used to pinpoint genes altered in response to T cell exhaustion. Subsequently, six machine learning algorithms were applied to develop a prognostic model linked with T cell exhaustion. This model was subsequently validated in the TARGETs and Meta cohorts. Finally, we examined disparities in immune cell infiltration, immune checkpoints, immune-related pathways, and the efficacy of immunotherapy between high and low TEX score groups. Results: The findings unveiled differential exhaustion in CD8+ T cells within the OS microenvironment. Three genes related to T cell exhaustion (RAD23A, SAC3D1, PSIP1) were identified and employed to formulate a T cell exhaustion model. This model exhibited robust predictive capabilities for OS prognosis, with patients in the low TEX score group demonstrating a more favorable prognosis, increased immune cell infiltration, and heightened responsiveness to treatment compared to those in the high TEX score group. Conclusion: In summary, our research elucidates the role of T cell exhaustion in the immunotherapy and progression of OS, the prognostic model constructed based on T cell exhaustion-related genes holds promise as a potential method for prognostication in the management and treatment of OS patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Análisis de Expresión Génica de una Sola Célula , Agotamiento de Células T , Osteosarcoma/genética , Neoplasias Óseas/genética , Inmunidad , Microambiente Tumoral/genética , Proteínas de Unión al ADN , Enzimas Reparadoras del ADN
10.
Br J Cancer ; 130(10): 1609-1620, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605247

RESUMEN

BACKGROUND: Chordomas are rare osseous neoplasms with a dismal prognosis when they recur. Here we identified cell surface proteins that could potentially serve as novel immunotherapeutic targets in patients with chordoma. METHODS: Fourteen chordoma samples from patients attending Xuanwu Hospital Capital Medical University were subjected to single-cell RNA sequencing. Target molecules were identified on chordoma cells and cancer metastasis-related signalling pathways characterised. VEGFR-targeting CAR-T cells and VEGFR CAR-T cells with an additional TGF-ß scFv were synthesised and their in vitro antitumor activities were evaluated, including in a primary chordoma organoid model. RESULTS: Single-cell transcriptome sequencing identified the chordoma-specific antigen VEGFR and TGF-ß as therapeutic targets. VRGFR CAR-T cells and VEGFR/TGF-ß scFv CAR-T cells recognised antigen-positive cells and exhibited significant antitumor effects through CAR-T cell activation and cytokine secretion. Furthermore, VEGFR/TGF-ß scFv CAR-T cells showed enhanced and sustained cytotoxicity of chordoma cell lines in vitro compared with VRGFR CAR-T cells. CONCLUSIONS: This study provides a comprehensive single-cell landscape of human chordoma and highlights its heterogeneity and the role played by TGF-ß in chordoma progression. Our findings substantiate the potential of VEGFR as a target for CAR-T cell therapies in chordoma which, together with modulated TGF-ß signalling, may augment the efficacy of CAR-T cells.


Asunto(s)
Cordoma , Inmunoterapia Adoptiva , Análisis de la Célula Individual , Humanos , Cordoma/terapia , Cordoma/genética , Cordoma/patología , Cordoma/inmunología , Inmunoterapia Adoptiva/métodos , Femenino , Masculino , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Persona de Mediana Edad , Adulto , Neoplasias Óseas/terapia , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Neoplasias Óseas/inmunología
11.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612571

RESUMEN

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Asunto(s)
Neoplasias Óseas , Radioisótopos de Calcio , Isotiocianatos , Osteosarcoma , Canales de Potencial de Receptor Transitorio , Humanos , Animales , Ratones , Canales de Potencial de Receptor Transitorio/genética , Ancirinas , Capsaicina/farmacología , Osteosarcoma/genética , Neoplasias Óseas/genética
12.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 110-115, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650147

RESUMEN

DNA damage response (DDR) plays a vital role in the development of cancer. Nevertheless, in osteosarcoma, the potential of DDR-related genes (DDRGs) remains unclear. Thus, the current research is intended to investigate the mechanisms of DDRGs in the development of osteosarcoma and to explore potential DDR-related biomarkers in forecasting the prognosis of osteosarcoma patients. The osteosarcoma genomic data from TCGA, GEO and cBioPortal databases were utilized for screening and identification of differentially expressed DDRGs (DEDDRGs). Consensus clustering analysis was performed to identify different subtypes of osteosarcoma based on the expressions of DDRGs. Key DEDRRGs were identified by overlapping DEDRRGs between different subtypes and DEDRRGs between tumor and control samples. Univariate, as well as LASSO regressions, were further applied to obtain robust prognostic signatures. GSVA and ssGSEA analysis were implemented to explore the underlying mechanisms of prognostic DDRG signature in regulating osteosarcoma. In addition, the drug sensitivity of patients in low- and high-risk groups was evaluated using pRRophetic algorithm. A total of 43 key DEDRRGs were identified. Followed by univariate Cox along with LASSO regression analyses, CDK6, CSF1R, EGFR, ERBB4, GATA3 and SOCS1 were identified as prognostic signatures in osteosarcoma. Cox regressions revealed that the risk score was an independent prognostic factor in osteosarcoma.  DDR may affect osteosarcoma via regulating immune microenvironment along with influencing cell proliferation, migration, adhesion and apoptosis. The chemotherapeutic response between patients in low- and high-risk groups was much different. The role of DDRGs in osteosarcoma and identified six DDR-linked biomarkers for forecasting the prognosis of osteosarcoma patients. Our outcomes enhanced the understanding of DDR-related molecular mechanisms involved in osteosarcoma and provided potential therapeutic targets for osteosarcoma patients.


Asunto(s)
Neoplasias Óseas , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/patología , Humanos , Pronóstico , Daño del ADN/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica , Femenino , Reparación del ADN/genética
13.
Sci Rep ; 14(1): 9186, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649690

RESUMEN

Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. Our study aimed to investigate disulfidptosis-related modification patterns in OS and their relationship with survival outcomes in patients with OS. We analyzed the single-cell-level expression profiles of disulfidptosis-related genes (DSRGs) in both OS microenvironment and OS subclusters, and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine models. In vitro and patient experiments validated our results. Three main disulfidptosis-related molecular clusters were defined in OS, and immune infiltration analysis suggested high immune heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. Our study systematically revealed the underlying relationship between disulfidptosis and OS at the single-cell level, identified disulfidptosis-related subtypes, and revealed the potential role of ACTB expression in OS disulfidptosis.


Asunto(s)
Neoplasias Óseas , Regulación Neoplásica de la Expresión Génica , Osteosarcoma , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/mortalidad , Osteosarcoma/metabolismo , Microambiente Tumoral/genética , Pronóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/mortalidad , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Actinas/metabolismo , Actinas/genética
14.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 458-463, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38678326

RESUMEN

Objective: To investigate the clinical application of EWSR1 gene rearrangement by fluorescence in situ hybridization (FISH) in bone and soft tissue tumors and to analyze the cases with atypical signal pattern. Methods: The cases detected for EWSR1 gene rearrangement by FISH in Beijing Jishuitan Hospital, Capital Medical University from 2014 to 2021 were collected, and the value of detecting EWSR1 gene rearrangement for diagnosing bone and soft tissue tumors was analyzed. The cases with atypical positive signals were further analyzed by next generation sequencing (NGS). Results: FISH using EWSR1 break-apart probe kit was successfully performed in 97% (205/211) of cases, 6 cases failed. Four of the 6 failures were due to improper decalcification, 1 case due to signal overlap caused by thick slices, and 1 case due to signal amplification and disorder. EWSR1 gene rearrangements were positive in 122 cases (122/205, 59%), atypical positive signal in 8 cases (8/205, 4%), and negative in 75 cases (75/205, 37%). In cases testing positive, the percentage of positive cells ranged from 34% to 98%, with 120 cases (120/122, 98%) showing a positive cell percentage greater than 50%. Among the 205 successfully tested cases, 156 cases were histologically diagnosed as Ewing's sarcoma, of which 110 were positive (110/156, 71%), 7 were atypical positive (7/156, 4%), and 39 were negative (39/156, 25%). Nine cases were histologically diagnosed as clear cell sarcoma of soft tissue, of which 6 were positive (6/9), 1 was atypical positive (1/9), and 2 were negative (2/9). Five cases were histologically diagnosed as extraskeletal myxoid chondrosarcoma, of which 2 were positive (2/5) and 3 were negative (3/5). Three cases were histologically diagnosed as angiomatoid fibrous histiocytoma, of which 2 were positive (2/3) and 1 was negative (1/3). Two cases were histologically diagnosed as myoepithelioma of soft tissue, of which 1 was positive (1/2) and 1 was negative (1/2). One case was histologically diagnosed as olfactory neuroblastoma with a positive result. The 29 other tumor cases including osteosarcoma, synovial sarcoma, and malignant melanoma and others were all negative. Basing on histology as the standard for diagnosis and considering atypical positive cases as negative, comparing with the 29 cases of other tumors as control group, the sensitivity for diagnosing Ewing's sarcoma through the detection of EWSR1 gene rearrangement was 71%, and the specificity was 100%; the sensitivity for diagnosing clear cell sarcoma of soft tissue was 67%, and the specificity was 100%; the sensitivity for diagnosing extraskeletal myxoid chondrosarcoma was 40%, and the specificity was 100%; the sensitivity for diagnosing angiomatoid fibrous histiocytoma was 67%, and the specificity was 100%; the sensitivity for diagnosing myoepithelioma of soft tissue was 50%, and the specificity was 100%; the sensitivity for diagnosing olfactory neuroblastoma was 100%, and the specificity was 100%. Four of 8 cases with atypical positive signals analyzed by NGS showed EWSR1 rearrangement, including EWSR1::FLI1 in one case of Ewing sarcoma, EWSR1::NFATC2 in one case of EWSR1::NFATC2-rearranged sarcoma, EWSR1::ATF1 in one case of clear cell sarcoma of soft tissue and EWSR1::NR4A3 in one case of extraskeletal myxoid chondrosarcoma. Conclusions: Detection of EWSR1 rearrangement by FISH is of utmost significance in the diagnosis of bone and soft tissue tumors. Cases with atypical positive signals should be further scrutinized, correlating with their histomorphology and verifying by NGS if necessary.


Asunto(s)
Neoplasias Óseas , Reordenamiento Génico , Hibridación Fluorescente in Situ , Proteína EWS de Unión a ARN , Neoplasias de los Tejidos Blandos , Humanos , Proteína EWS de Unión a ARN/genética , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Neoplasias de los Tejidos Blandos/diagnóstico , Hibridación Fluorescente in Situ/métodos , Neoplasias Óseas/genética , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/patología , Histiocitoma Fibroso Maligno/genética , Histiocitoma Fibroso Maligno/diagnóstico , Histiocitoma Fibroso Maligno/patología , Sarcoma de Ewing/genética , Sarcoma de Ewing/diagnóstico
15.
J Orthop Surg Res ; 19(1): 260, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659042

RESUMEN

Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.


Asunto(s)
Neoplasias Óseas , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Ligasas , MicroARNs , Osteosarcoma , Proteínas del Grupo Polycomb , ARN Circular , Regulación hacia Arriba , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Humanos , ARN Circular/genética , MicroARNs/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Animales , Progresión de la Enfermedad , Línea Celular Tumoral , Femenino , Activación Transcripcional/genética , Pronóstico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
16.
J Cell Mol Med ; 28(8): e18269, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568056

RESUMEN

Circular RNAs (circRNAs) play an important role in the progression of osteosarcoma. However, the precise function of circPVT1 in osteosarcoma remains elusive. This study aims to explore the molecular mechanism underlying the involvement of circPVT1 in osteosarcoma cells. We quantified circPVT1 expression using qRT-PCR in both control and osteosarcoma cell lines. To investigate the roles of circPVT1, miR-490-5p and HAVCR2 in vitro, we separately conducted overexpression and inhibition experiments for circPVT1, miR-490-5p and HAVCR2 in HOS and U2OS cells. Cell migration was assessed through wound healing and transwell migration assays, and invasion was measured via the Matrigel invasion assay. To elucidate the regulatory mechanism of circPVT1 in osteosarcoma, a comprehensive approach was employed, including fluorescence in situ hybridization, qRT-PCR, Western blot, bioinformatics, dual-luciferase reporter assay and rescue assay. CircPVT1 expression in osteosarcoma cell lines surpassed that in control cells. The depletion of circPVT1 resulted in a notable reduction in the in vitro migration and invasion of osteosarcoma cells. Mechanism experiments revealed that circPVT1 functioned as a miR-490-5p sequester, and directly targeted HAVCR2. Overexpression of miR-490-5p led to a significant attenuation of migration and invasion of osteosarcoma cells, whereas HAVCR2 overexpression had the opposite effect, promoting these abilities. Additionally, circPVT1 upregulated HAVCR2 expression via sequestering miR-490-5p, thereby orchestrating the migration and invasion in osteosarcoma cells. CircPVT1 orchestrates osteosarcoma migration and invasion by regulating the miR-490-5p/HAVCR2 axis, underscoring its potential as a promising therapeutic target for osteosarcoma.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Humanos , Hibridación Fluorescente in Situ , Movimiento Celular/genética , Osteosarcoma/genética , Neoplasias Óseas/genética , MicroARNs/genética , Receptor 2 Celular del Virus de la Hepatitis A
17.
Asian Pac J Cancer Prev ; 25(4): 1195-1203, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679978

RESUMEN

BACKGROUND: Osteosarcoma is the most common primary malignant bone tumor, mainly affecting children, young adults, and the elderly. It is an aggressive cancer with a poor prognosis, exhibiting low survival rates even with standard treatment. Recently, circular RNA molecules capable of influencing gene expression through various functions, with their main role being acting as microRNA sponges and reducing their intracellular expression, have been identified. Recent studies have linked circular RNAs to osteosarcoma development and progression. Therefore, the present study aimed to investigate the alteration in circular RNA expression during osteosarcoma development and progression. METHODS: An integrative literature review was conducted from September 10th to November 12th, 2021, using the following databases: PubMed/MEDLINE, SCOPUS, Web of Science, OVID, and EMBASE. 129 full articles were included in the review. The obtained data were organized using a standardized data collection instrument, which included the following information: altered expression profile of circular RNAs, associated cancer hallmarks, clinical-pathological relationships of circular RNAs, and perspectives on the studied circular RNAs. RESULTS: A total of 94 distinct circular RNAs were identified, predominantly showing an increased expression pattern. Approximately 91% of the studies that aimed to identify the mechanisms of action of circular RNAs highlighted the function of circular RNAs as microRNA sponges. The most associated cancer hallmarks with the identified circular RNAs were proliferative signaling induction, invasion and metastasis, and resistance to cell death. The altered expression of these circular RNAs generally correlated with a worse prognosis for patients, as evidenced by clinical features such as shorter survival, advanced Enneking and/or TNM stage, higher incidence of metastasis, larger tumor size, and increased chemoresistance. CONSLUSION: These findings indicate the significance of circular RNA molecules in osteosarcoma carcinogenesis, suggesting their potential as new prognostic and/or diagnostic biomarkers, as well as alternative therapeutic targets in the fight against osteosarcoma.


Asunto(s)
Neoplasias Óseas , Progresión de la Enfermedad , Osteosarcoma , ARN Circular , Osteosarcoma/genética , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/mortalidad , Humanos , ARN Circular/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Regulación Neoplásica de la Expresión Génica , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , MicroARNs/genética
18.
J Vis Exp ; (205)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587398

RESUMEN

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Despite the development of new treatment plans in recent years, the prognosis for osteosarcoma patients has not significantly improved. Therefore, it is crucial to establish a robust preclinical model with high fidelity. The patient-derived xenograft (PDX) model faithfully preserves the genetic, epigenetic, and heterogeneous characteristics of human malignancies for each patient. Consequently, PDX models are considered authentic in vivo models for studying various cancers in transformation studies. This article presents a comprehensive protocol for creating and maintaining a PDX mouse model that accurately mirrors the morphological features of human osteosarcoma. This involves the immediate transplantation of freshly resected human osteosarcoma tissue into immunocompromised mice, followed by successive passaging. The described model serves as a platform for studying the growth, drug resistance, relapse, and metastasis of osteosarcoma. Additionally, it aids in screening the target therapeutics and establishing personalized treatment schemes.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Niño , Humanos , Animales , Ratones , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto , Recurrencia Local de Neoplasia , Osteosarcoma/genética , Osteosarcoma/patología , Modelos Animales de Enfermedad , Neoplasias Óseas/genética , Neoplasias Óseas/patología
19.
Biol Direct ; 19(1): 25, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570856

RESUMEN

Circular RNAs (circRNAs) are a class of highly multifunctional single-stranded RNAs that play crucial roles in cancer progression, including osteosarcoma (OS). Circ_0002669, generated from the dedicator of cytokinesis (DOCK) gene, was highly expressed in OS tissues, and negatively correlated with OS patient survival. Elevated circ_0002669 promoted OS cell growth and invasion in vivo and in vitro. By biotin pulldown and mass spectroscopy, we found that circ_0002669 directly bound to MYCBP, a positive regulator of c-myc, to prevent MYCBP from ubiquitin-mediated proteasome degradation. In addition, circ_0002669 interacted with miR-889-3p and served as a miRNA sponge to increase the expression of MYCBP, as determined by luciferase assays and RNA immunoprecipitation. Functional rescue experiments indicated MYCBP acted as a key factor for circ_0002669- and miR-889-3p-regulated OS cell proliferation and migration. Increased expression of c-myc-associated genes, such as CCND1, c-Jun and CDK4, were found in circ_0002669- and MYCBP-overexpressing OS cells. Our data thus provide evidence that circ_0002669 promotes OS malignancy by protecting MYCBP from protein ubiquitination and degradation and blocking miR-889-3p-mediated inhibition of MYCBP expression.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Humanos , Neoplasias Óseas/genética , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Osteosarcoma/genética , Factores de Transcripción
20.
Sci Rep ; 14(1): 9231, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649439

RESUMEN

This study investigated the impact of overexpressing the mitochondrial enzyme Fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) in human osteosarcoma epithelial cells (U2OS) in vitro. While the downregulation or knockdown of FAHD1 has been extensively researched in various cell types, this study aimed to pioneer the exploration of how increased catalytic activity of human FAHD1 isoform 1 (hFAHD1.1) affects human cell metabolism. Our hypothesis posited that elevation in FAHD1 activity would lead to depletion of mitochondrial oxaloacetate levels. This depletion could potentially result in a decrease in the flux of the tricarboxylic acid (TCA) cycle, thereby accompanied by reduced ROS production. In addition to hFAHD1.1 overexpression, stable U2OS cell lines were established overexpressing a catalytically enhanced variant (T192S) and a loss-of-function variant (K123A) of hFAHD1. It is noteworthy that homologs of the T192S variant are present in animals exhibiting increased resistance to oxidative stress and cancer. Our findings demonstrate that heightened activity of the mitochondrial enzyme FAHD1 decreases cellular ROS levels in U2OS cells. However, these results also prompt a series of intriguing questions regarding the potential role of FAHD1 in mitochondrial metabolism and cellular development.


Asunto(s)
Neoplasias Óseas , Hidrolasas , Mitocondrias , Osteosarcoma , Especies Reactivas de Oxígeno , Humanos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Mitocondrias/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA